We will consider the ferromagnetic state
1. Introduction
Iron in the hcp structure has a hexagonal lattice with two parameters, a and c:
a1 = (a, 0, 0), a2 = (−a/2 ,a√3/2 , 0) a3 = (0, 0, c)
and two atoms in the unit cell, at positions d1 = (0, 0, 0), d2 = (0, a√3/2, c/2)
The non cubic lattice can be described in many equivalent ways:
• ibrav=4, celldm(1)= a, celldm(3)= c/a, as in sample file fe_hcp.scf.in
• ibrav=4, a= a, c= c, both in Å, not a.u.
• ibrav=0, celldm(1)= a, lattice vectors in card
CELL PARAMETERS (alat)
1.000000 0.000000 0.000000
-0.500000 0.866025 0.000000
0.000000 0.000000 1.633000
• Using space group=194, and Wyckoff positions 2c (see sample file fe hcp.wy.in)
....
Useful hint: use xcrysden --pwi fe_hcp.scf.in to verify the structure.
fe_hcp.scf.in
&control
prefix='fe'
/
&system
ibrav= 4, celldm(1)=5.0, celldm(3)=1.633, nat=2, ntyp= 1,
ecutwfc = 25.0, ecutrho = 200.0,
occupations='smearing', smearing='mv', degauss=0.02,
nbnd=12,
nspin=2,
starting_magnetization(1)=0.4
/
&electrons
mixing_beta = 0.5
/
ATOMIC_SPECIES
Fe 1. Fe.pbe-nd-rrkjus.UPF
ATOMIC_POSITIONS alat
Fe 0.0 0.00 0.0
Fe 0.0 0.5773503 0.8165
K_POINTS automatic
8 8 6 0 0 0
fe_hcp.wy.in
&control
prefix='fe'
/
&system
! Specify lattice as space group number + Wyckoff positions !
! On input, nat = number of Wyckoff positions, not of atoms !
space_group=194, celldm(1)=5.0, celldm(3)=1.633, nat=1, ntyp= 1,
ecutwfc = 25.0, ecutrho = 200.0,
occupations='smearing', smearing='mv', degauss=0.02,
nbnd=12,
nspin=2,
starting_magnetization(1)=0.4
/
&electrons
mixing_beta = 0.5
/
ATOMIC_SPECIES
Fe 1. Fe.pbe-nd-rrkjus.UPF
# crystal_sg: use Wyckoff positions with needed parameters (none in this case)
ATOMIC_POSITIONS crystal_sg
Fe 2c
K_POINTS automatic
8 8 6 0 0 0
2. Equation of state for non cubic structures
For a few selected values of the unit cell volume,
1. Perform a variable-cell calculation (sample file fe_hcp.vcr.in)
• set calculation=’vc-relax’
• add two namelists, &ions ... / and &cell ... /, after &electrons
• in &cell ... /, set cell dofree=’shape’ (keeps volume fixed)
2. Inspect output of fe_hcp.vcr.out
• several scf steps are performed, forces (zero by symmetry) and stresses computed
• the energy decrease and the stress becomes more and more isotropic as the minimum is approached
• a final scf step is performed with plane waves computed for the final cell
• the final cell is printed after the last CELL PARAMETERS card
3. Calculation
We need 2 files
fe_hcp.vcr.in
&control
calculation='vc-relax'
outdir='./OUT_HCP'
pseudo_dir = './',
prefix='fe'
/
&system
ibrav= 4, celldm(1)=5.0, celldm(3)=1.633, nat=2, ntyp= 1,
ecutwfc = 25.0, ecutrho = 200.0,
occupations='smearing', smearing='mv', degauss=0.02,
nbnd=12,
nspin=2,
starting_magnetization(1)=0.4
/
&electrons
mixing_beta = 0.5
/
&ions
/
&cell
cell_dofree='shape'
/
ATOMIC_SPECIES
Fe 1. Fe.pbe-nd-rrkjus.UPF
ATOMIC_POSITIONS alat
Fe 0.0 0.00 0.0
Fe 0.0 0.5773503 0.8165
K_POINTS automatic
8 8 6 0 0 0
Fe.pbe-nd-rrkjus.UPF
You can download the file using the following command
$ wget https://www.quantum-espresso.org/upf_files/Fe.pbe-nd-rrkjus.UPF --no-check-certificate
algerien1970@linux-wipm:~/abinitio/QE-tutorials/Fe-hex> ls
fe_hcp.vcr.in Fe.pbe-nd-rrkjus.UPF
algerien1970@linux-wipm:~/abinitio/QE-tutorials/Fe-hex> pw.x < fe_hcp.vcr.in |tee fe_hcp.vcr.out
.
.
End of BFGS Geometry Optimization
Final enthalpy = -111.5771652771 Ry
File ./OUT_HCP/fe.bfgs deleted, as requested
Begin final coordinates
new unit-cell volume = 176.77744 a.u.^3 ( 26.19571 Ang^3 )
density = 0.12678 g/cm^3
CELL_PARAMETERS (alat= 5.00000000)
0.980620254 0.000000000 -0.000000000
-0.490310127 0.849242051 -0.000000000
-0.000000000 -0.000000000 1.698182913
ATOMIC_POSITIONS (alat)
Fe 0.0000000000 -0.0000000000 0.0000000000
Fe -0.0000000000 0.5661613978 0.8490914563
End final coordinates
Reference: Using PWscf: basics (write-up, exercises, March 2018)
0 Comments