The calculation of Hubbard parameters using the HP code is based on DFPT: Density-Functional Perturbation Theory
We need 3 input files and 2 pseudopotentials
NiO.scf1.in
&control
calculation='scf'
restart_mode='from_scratch',
prefix='NiO'
pseudo_dir = '/home/algerien/abinitio/q-e-qe-6.8/pseudo/'
outdir='/home/algerien/abinitio/q-e-qe-6.8/tempdir/'
verbosity='high'
/
&system
ibrav = 0,
celldm(1) = 7.88,
nat = 4,
ntyp = 3,
ecutwfc = 50.0,
ecutrho = 400.0,
occupations = 'smearing',
smearing = 'gauss',
degauss = 0.001,
nspin = 2,
starting_magnetization(1) = 0.5,
starting_magnetization(2) = -0.5,
lda_plus_u = .true.,
lda_plus_u_kind = 0,
U_projection_type = 'ortho-atomic',
Hubbard_U(1) = 1.d-8
Hubbard_U(2) = 1.d-8
/
&electrons
conv_thr = 1.d-10
mixing_beta = 0.7
/ATOMIC_SPECIES
Ni1 58.693 ni_lda_v1.4.uspp.F.UPF
Ni2 58.693 ni_lda_v1.4.uspp.F.UPF
O 16.000 o_lda_v1.2.uspp.F.UPF
ATOMIC_POSITIONS {alat}
Ni1 0.0000000 0.0000000 0.0000000
Ni2 0.5000000 0.5000000 0.0000000
O 0.5000000 0.0000000 0.0000000
O 1.0000000 0.5000000 0.0000000
CELL_PARAMETERS
1.00000000 0.50000000 0.50000000
0.50000000 1.00000000 0.50000000
0.50000000 0.50000000 1.00000000
K_POINTS {automatic}
2 2 2 0 0 0
NiO.scf2.in
&control
calculation='scf'
restart_mode='from_scratch',
prefix='NiO'
pseudo_dir = '/home/algerien/abinitio/q-e-qe-6.8/pseudo/'
outdir='/home/algerien/abinitio/q-e-qe-6.8/tempdir/'
verbosity='high'
/
&system
ibrav = 0,
celldm(1) = 7.88,
nat = 4,
ntyp = 3,
ecutwfc = 50.0,
ecutrho = 400.0,
nbnd = 29
occupations = 'fixed'
nspin = 2,
tot_magnetization = 0.00
lda_plus_u = .true.,
lda_plus_u_kind = 0,
U_projection_type = 'ortho-atomic',
Hubbard_U(1) = 1.d-8
Hubbard_U(2) = 1.d-8
/
&electrons
conv_thr = 1.d-15
mixing_beta = 0.7
startingpot = 'file'
startingwfc = 'file'
/
ATOMIC_SPECIES
Ni1 58.693 ni_lda_v1.4.uspp.F.UPF
Ni2 58.693 ni_lda_v1.4.uspp.F.UPF
O 16.000 o_lda_v1.2.uspp.F.UPF
ATOMIC_POSITIONS {alat}
Ni1 0.0000000 0.0000000 0.0000000
Ni2 0.5000000 0.5000000 0.0000000
O 0.5000000 0.0000000 0.0000000
O 1.0000000 0.5000000 0.0000000
CELL_PARAMETERS
1.00000000 0.50000000 0.50000000
0.50000000 1.00000000 0.50000000
0.50000000 0.50000000 1.00000000
K_POINTS {automatic}
2 2 2 0 0 0
NiO.hp.in
&inputhp
prefix = 'NiO',
outdir = '/home/algerien/abinitio/q-e-qe-6.8/tempdir/',
nq1 = 2, nq2 = 2, nq3 = 2,
conv_thr_chi = 1.0d-8,
iverbosity = 2
/
Pseudopotentials
ni_lda_v1.4.uspp.F.UPF
o_lda_v1.2.uspp.F.UPF
It's better to download the file in the pseudo directory $QEROOT/pseudo
You can download the file using the following command
$ cd $QEROOT/pseudo
algerien1970@linux-ml0a:~/abinitio/q-e-qe-6.8/pseudo>
wget https://www.quantum-espresso.org/upf_files/ni_lda_v1.4.uspp.F.UPF --no-check-certificate
wget https://www.quantum-espresso.org/upf_files/o_lda_v1.2.uspp.F.UPF --no-check-certificate
Running the first SCF calculation for Nio
algerien1970@linux-ml0a:~/abinitio/QE-tutorials/Hub-Par/NiO> pw.x < NiO.scf1.in |tee NiO.scf1.out
Extracting the number of Kohn-Sham states from the previous run
....../Hub-Par/NiO> grep 'number of Kohn-Sham states' NiO.scf1.out | tail -1
number of Kohn-Sham states= 29
The number of bands in Ni.scf2.in must be 29
nbnd = 29
Extracting the value of the total magnetization from the previous run
....../Hub-Par/NiO> grep 'total magnetization' NiO.scf1.out | tail -1
total magnetization = -0.00 Bohr mag/cell
Second self-consistent calculation
algerien1970@linux-ml0a:~/abinitio/QE-tutorials/Hub-Par/NiO> pw.x < NiO.scf2.in |tee NiO.scf2.out
Performing the linear-response calculation
algerien1970@linux-ml0a:~/abinitio/QE-tutorials/Hub-Par/NiO> hp.x < NiO.hp.in |tee NiO.hp.out
The Hubbard parameter values for are in the top of file NiO.Hubbard_parameters.dat
=-------------------------------------------------------------------=
Hubbard U parameters:
site n. type label spin new_type new_label Hubbard U (eV)
1 1 Ni1 1 1 Ni1 8.4072
2 2 Ni2 -1 1 Ni1 8.4072
=-------------------------------------------------------------------=
0 Comments